Факельные установки правила

ООО «ТПП Нефтеавтоматика»

Телефон: (347) 246-58-65, 294-09-44
Эл. почта: tppnafta@yandex.ru

  1. Главная
  2. Производство
  • Проектирование
  • Строительно-монтажные работы
  • Метрологическое обеспечение
  • Производство
    • АСУТП и шкафы автоматики
    • Факельные установки
    • Изготовление металлоконструкций
    • Изготовление деталей на заказ
    • Технологические блоки СИКН, СИКГ
    • Насосные нефтяные и пожаротушения
    • Производство факельных установок бездымного сжигания.

      Проектируем и изготавливаем факельные установки с обеспечением бездымности сжигания газа, в вертикальном, горизонтальном и мобильном исполнении. Изготавливаем свечи рассеивания, производим строительно-монтажные, шеф-монтажные и пусконаладочные работы факельного оборудования.

      Концепция и достигнутый результат в изготовлении бездымных факельных установок.

      1. Бездымность работы факельного оголовка в диапазоне расходов от 0 до 3 700 000 м 3 /сут. и плотности сжигаемого газа до 1,4 кг/м 3 (с содержанием тяжелых фракций) только с помощью конструкции оголовка, без применения дополнительного оборудования. Срок службы 20 лет.

      Обеспечение бездымности факельного оголовка с помощью дополнительного оборудования при больших сбросах, до 10 000 000 м 3 /сут. и большой плотности сжигаемого газа, в том числе, с содержанием нефтяного тумана и капельных ШФЛУ. Срок службы 20 лет

      2. Универсальность дежурной горелки, возможность ее работы на любом составе и параметрах сбросного газа, используя его как топливный, в том числе, при большом содержании инертных (Азота). Срок службы до 20 лет.

      3. Полная автоматизация процессов запуска и работы факельной установки без вмешательства оператора. Гарантированность розжига и контроля пламени. Простота в обслуживании.

      4. Использование современных технологий и передовых разработок для обеспечения надежности и увеличения срока службы факельной установки.

      5. Индивидуальные технические решения при изготовлении факельной установки, применимые к параметрам и условиям для каждого объекта Заказчика.

      Компания обепечивает полное соответствие требованиям и нормативам в производстве факельных установок для объектов нефтегазовой отрасли:

      • ГОСТ 12.1.007-76 «ССБТ. Вредные вещества. Классификация и общие требования безопасности».
      • ВНТП 3-85 «Нормы Технологического проектирования объектов сбора, транспорта, подготовки нефти, газа и воды нефтяных месторождений».
      • «Правила безопасности в нефтяной и газовой промышленности». Приказ Федеральной службы по экологическому, технологическому и атомному надзору №101 от 12 марта 2013г.
      • «Руководство по безопасности факельных систем». Приказ Федеральной службы по экологическому, технологическому и атомному надзору №779 от 26.12.2012г.
      • ГОСТ Р 53681-2009, п.10.1., п.4.4.3.

      Вертикальные факельные установки.

      Состав, описание оборудования, варианты исполнения.

      В стандартном исполнении, вертикальная факельная установка состоит из основных частей:

      1. Оголовок факельный.

      2. Ствол факельный.

      3. Автоматизированная система управления розжигом и контролем пламени факельной установки.

      Факельный оголовок бездымного горения

      Производимые нашей компанией факельные оголовки обеспечивают бездымность и экологичность сжигания газа благодаря конструкции эжекционного типа. Обеспечиваются газодинамические режимы соотношения сжигаемого газа и эжекции атмосферного воздуха, для создания условий полного сгорания сбросного газа.

      При сбросных газах с малой и средней плотностью, до 1,2 — 1,4 кг/м 3 , в зависимости от компонентов в составе газа и других его параметрах, бездымность сжигания обеспечивается без применения дополнительных технических средств, только за счет конструкции факельного оголовка. Смотрите фото ниже:


      При большом содержании «тяжелых» компонентов в составе сбросного газа, бездымность сжигания обеспечивается за счет подачи дополнительного наддува воздуха в область горения, с одновременным использованием специальной конструкции факельного оголовка. Данная технология обеспечивает максимальное сгорание «тяжелого» газа и тем самым, бездымность факельного оголовка.

      Долговечность работы факельного оголовка обеспечена за счёт самостоятельного эффективного охлаждения его конструкции атмосферным воздухом и рядом других технических решений, использующих законы аэро- и термодинамики. Срок службы 20 лет.

      Совмещеные факельные оголовки

      В зависимости от технических условий Заказчика, наша компания изготавливает факельные оголовки, обеспечивающие одновременное сжигание газа от двух источников сброса. К примеру, одновременное сжигание технологического сброса газа низкого (ФНД) и высокого (ФНД) давления.

      Модификация факельных оголовков и расчет конструкции при изготовлении.

      Перед изготовлением факельного оголовка, в зависимости от параметров сжигаемого газа, ООО «ТПП НЕФТЕАВТОМАТИКА» производит расчет конструкции оголовка для обеспечения бездымного сжигания сбросного газа, а так же, расчеты проходных сечений и прочностной расчет конструкции.

      Учитывая вышеописанную практику расчетов, изготавливаемые компанией оголовки делятся на несколько стандартных модификаций:

      — струйные факельные оголовки, с расходом сжигаемого газа до 200 000 м 3 /сут. (низкого давления);

      — струйные факельные оголовки, с расходом сжигаемого газа до 900 000 м 3 /сут. (высокого давления);

      — совмещённые струйные факельные оголовки (совмещенные низкого и высокого давления);

      — прямоточные вихревые, с расходом сжигаемого газа до 3 500 000 м 3 /сут.;

      — с дополнительной подачей воздуха высокого давления до 8 кПА, с расходом сжигаемого газа до 10 000 000 м 3 /сут.

      Все модификации оголовков факельных соответствуют по бездымности требованиям Правил Безопасности от 26.12.2012г. N779 и ГОСТ Р 53681-2009.

      Факельный ствол

      В зависимости от технического задания и особенностей объекта Заказчика, ствол факельный изготавлявается в нескольких вариантах:

      1. Одиночный факельный ствол, с лестницами, переходами и площадками обслуживания. Диаметр ствола от Ду100 до Ду1200мм, высота ствола от 10 до 100м. Самое распространенное изготовление конструкции факельного ствола для большинства факельных установок.

      2. Сдвоенный факельный ствол, с лестницами, переходами и эллипсными площадками обслуживания сразу для двух стволов. Диаметры совмещенных стволов от Ду100 до Ду1200мм, высота стволов от 10 до 100м. На практике конструкция используется для изготовления совмещенной факельной установки.

      3. Ствол внутри ствола, с лестницами, переходами и площадками обслуживания. Диаметр внешнего ствола от Ду100 до Ду1200мм, высота ствола от 10 до 80м. Конструкция используется для изготовления совмещенной факельной установки. Главная цель — уменьшение парусности (ветровой нагрузки) на всю конструкцию ствола. Применяется очень редко, ввиду сложности и затратности изготовления, при совместно размещаемом на стволе воздуховоде, для дополнительной подачи воздуха высокого давления на оголовок факельный (дополнительная ветровая нагрузка на ствол).

      4. Ствол с опорой башенного типа в виде ферменной конструкции. Применяется в случае ограниченности площадки факельной установки для монтажа ветровых растяжек ствола. Применяется редко, ввиду затратности изготовления фермы башенного типа, высокой стоимости транпортировки элементов конструкции и сложности монтажа на объекте Заказчика.

      Для определения конструкции ствола, высоты, диаметра, толщины стенок несущих элементов, количества ветровых растяжек и их исполнение, а так же, других данных, в зависимости от параметров сжигаемого газа, климатических и эксплуатационных особенностей на объекте, ООО «ТПП НЕФТЕАВТОМАТИКА» производит прочностной и ветровой расчет конструкции, расчет высоты факельной установки с учетом теплового излучения сжигаемого газа.

      Автоматизированная система управления розжигом и контролем пламени.

      На примере вертикальной факельной установки мы представим подробное описание автоматизированной системы управления (АСУ), которая применяется во всех видах факельных установок производимых нашей компанией.

      Система управления состоит из нескольких блочных элементов:

      1. Дежурная горелка.

      3. Блок высоковольтный электрического зажигания.

      4. Пульт управления единый. В раздельном исполнении — пульты управления местный и дистанционный.

      5. Блок управления топливным газом.

      Дежурная горелка универсальная.

      Универсальность дежурной горелки заключается в возможности ее применения при отсутствии топливного газа на факельной установке. Разработанная и успешно применяемая на практике, дежурная горелка надежно работает на сжигаемом попутном нефтяном газе, без специальной подготовки, без сепарации и без осушения.

      Гарантирована надёжность розжига и работоспособность дежурной горелки при содержании жидких дисперсных составляющих, в кислото-агрессивных средах и при большом содержании инертных в составе сбросного газа, используемого как топливный.

      Стабильная работа дежурной горелки обеспечена при диапазоне давления газа от 0,02 МПа до 0,3 МПа. В процессе эксплуатации регулировки по расходам топливного газа не требуются. Средний расход составляет 3-4 м 3 /час при 0,1-0,3 МПа.

      За счет применения аэродинамических трубчатых элементов конструкции происходит постоянное, эффективное охлаждение зон высоких температур.

      Обеспечен прямой автоматический электророзжиг и контроль пламени при скорости ветра до 35-40 метров в секунду.

      Обеспечена стабилизация горения газа с содержанием азота до 85%!

      Токовод.

      Предназначен для передачи высокого напряжения от блока высоковольтного на электрод дежурной горелки. Выполнен в виде трубчатой конструкции для защиты внутри нее высоковольтной жилы от высоких температур при работе факельного оголовка и атмосферных осадков.

      Блок высоковольтный электрического зажигания.

      Служит источником высокого напряжения для обеспечения качественного электророзжига на дежурной горелке. Имеет компактные габариты, размещается на факельном стволе, в зоне пониженных тепловых излучений.

      Пульт управления единый.

      В раздельном исполнении — пульты управления местный и дистанционный.

      Пульты управления выполняют весь комплекс функций по автоматическому запуску и поддержанию непрерывной работы факельной установки без участия оператора. Полный функционал управления и получения информации возможен с любого пульта, местного или дистанционного. Вмешательство оператора необходимо только при проведении пусконаладочных или регламентных работ.

      Пульт местного управления и контроля обычно размещается на факельной площадке, за обваловкой и монтируется вертикально на стойки или конструкции. Дистанционный пульт размещается в операторной или АСУТП. При поставке единого исполнения пульта управления, он может размещаться в любом месте, за обваловкой на факельной площадке или в операторной (АСУТП).

      В зависимости от варианта исполнения, в любом случае, пульт управления единый или дистанционный дополнительно обеспечивают передачу необходимой информации по протоколу Modbus с интерфейсом RS485 или через «сухие» контакты реле в АСУТП, на любое расстояние.

      Система автоматизации факельной установки обеспечивает быстродействие и надёжность розжига дежурных горелок за одну-две секунды. Управление системой возможно в ручном и автоматическом режиме, как с факельной площадки, так и с операторной.

      В автоматическом режиме, с момента запуска факельной установки происходит:

      — автоматический розжиг без участия оператора;

      — автоматический контроль пламени дежурных горелок;

      — автоматический розжиг в случае погасания пламени дежурной горелки.

      Конструкция электрического розжига.

      В конструкции системы управления розжигом и контролем пламени факельной установки используются научные разработки авиационной промышленности и их практическое многолетнее применение.

      Обобщенно, наша дежурная горелка состоит из корпуса, в виде трубчатой конструкции (заземленной вместе с факельной установкой), внутрь которой подается топливный газ. В центре этой «трубы» размещен электрод, на который подается высокое напряжение до 20 тыс. вольт с высоковольтного блока.

      При включении зажигания в ручном или автоматическом режиме создается мощная электрическая дуга между электродом и корпусом дежурной горелки. Потребляемая мощность при этом сравнима с домашней электрической лампой, примерно 100Вт. Происходит гарантированный розжиг газа на дежурной горелке и факельном оголовке. В применяемой нами системе розжига, выделяемая на зажигание электрическая энергия увеличивается до 500%, при сохранении массо габаритных показателей, что позволяет зажигать любые смеси ПНГ, в том числе и при высоком содержании инертных газов.

      Конструкция контроля наличия пламени.

      Контроль наличия пламени на дежурной горелке основан на физическом принципе «детекторного эффекта пламени». Контроль пламени происходит по факту наличия непосредственно самого тела пламени (плазмы пламени).

      Как это происходит:

      При включении контроля пламени в ручном или автоматическом режиме с помощью нашей автоматики (пульт управления), в пространстве между центральным электродом и корпусом дежурной горелки происходит ионизация пламени (пламя на дежурной горелке горит). В плазме пламени начинают преобладать положительные ионы (положительные носители заряда), со значительно меньшим количеством отрицательных зарядов, в виде электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд. В итоге, при подаче переменного напряжения на центральный электрод дежурной горелки по отношению к массе (корпусу) дежурной горелки, суммарный потенциал межу центральным электродом и корпусом дежурной горелки приобретает преимущественно положительный заряд.

      В итоге, при наличии пламени на дежурной горелке, между центральным электродом и корпусом дежурной горелки появляется положительный ток ионизации, с устойчивым потенциалом, достаточным для восприятия сигнала нашей автоматикой и выводом на панель пульта управления «сигнала о наличии пламени».

      Данный сигнал, так же, используется автоматикой в автоматическом режиме работы факельной устанвоки (автоматическом розжиге в случае отсутствия пламени).

      В данной системе контроля пламени полностью отсутствуют элементы специальных конструкций и датчиков (например, защитные карманы для термопар и сами термопары, фотоприемники и фотодатчики), в том числе в зоне повышенных температур. «Ломаться и гореть» здесь просто не чему.

      Система контроля пламени надежна и применяется десятки лет на авиационных и ракетных двигателях отечественного производства. Время выдачи сигнала о наличиии или отсутствии пламени – доли секунды.

      В целом о дежурной горелке.

      В конструкции дежурной горелки используется один центральный электрод, в котором одновременно совмещены функции «зажигания и контроля пламени».

      В результате, комплект дежурной горелки, устанавливаемый на факельный олголовок, отличается простотой, надёжностью и сниженной массой.

      Для электрода пламени применены жаропрочные стали.

      Типоразмерный ряд факельных установок ООО «ТПП Нефтеавтоматика»

      Примечание: данные представлены при стандартных, усредненных соотношениях, без учета технических и эксплуатационных данных сбросного газа.

      Индивидуальные технические решения

      На любом объекте существует ряд технических и технологических особенностей, при которых необходимо обеспечить бесперебойность работы факельной установки. При этом, нестандартными могут быть:

      — химический состав сжигаемого (сбросного) газа;

      — использование сбросного газа в качестве топливного газа для дежурной горелки;

      — периодичность сброса, в том числе, от нескольких источников с разным расходом и давлением;

      — ограниченные технические возможности объекта для обеспечения бездымности при сжигании «тяжелых» сбросных газов;

      — сложные климатические и геодезические условия.

      Мы всегда используем индивидуальный подход к техническим решениям при производстве факельной установки для каждого объекта.

      Стрелкин А.В., Филин В.Е. » Эксплуатация факельных установок, требования к оголовкам и другим элементам»

      Стрелкин Алексей Викторович, начальник отдела экспертов НК ООО «НТЦ «НефтеМетСервис»

      Филин Владимир Евгеньевич, зам.генерального директора ООО «Техэкспертиза»

      Эксплуатация факельных установок, требования к оголовкам и другим элементам

      В статье описываются требования к разным элементам факельных установок, в том числе оголовкам, даны расчеты по оптимальному размеру ствола.

      В настоящее время на объектах капитального строительства и технического перевооружения факельного хозяйства, согласно заданию на проектирование, проектируем факельную установку и ее обвязку. Значительная часть технологических установок (ДНС, УПС, УПВСН) подключена к существующей системе газосбора, таким образом, факельные установки служат только для аварийного сжигания попутного газа и для сжигания небольших объемов газа со сбросов с предохранительных пружинных клапанов (ППК).

      Сбрасываемый предохранительными устройствами газ должен отводиться в систему или на факел (свечу). Предлагаю установку одного факела аварийного сжигания на существующей системе газосбора от группы технологических установок, а на технологической установке устанавливаем свечу для сжигания малых, периодических сбросов газа от предохранительных клапанов и при опорожнении технологических емкостей.

      Согласно принципиальной схеме, продукция скважин поступает в сепаратор нефтегазовый поз. НГС, где при избыточном давлении 0,3 МПа осуществляется сепарация газа. Давление поддерживается регулирующим клапаном «до себя», который устанавливается на газовой линии. Газ, выделившийся в НГС, подается в газосепаратор. В газосепараторе ГС происходит отделение конденсата (капельной жидкости) от газа, после чего попутный нефтяной газ направляется до врезки в существующий газопровод в систему газосбора. В аварийном режиме (компрессорная по трассе или ГПЗ не принимает газ) газ поступает на проектируемую общую факельную установку для группы дожимных насосных станций размещаемою в районе ДНС-10. Факельная установка укомплектована стволом факельным, оголовком факельным со средствами контроля и автоматизации. Условия применения: газ по системе газосбора до факельной установки при ДНС-10 должен транспортироваться под своим давлением (без компрессора) и давление в точке подключения газопровода от технологической установки к общей системе газосбора должно быть не более 0,3 Мпа.

      Газ, выделившийся в дренажной емкости при сбросе с предохранительных клапанов и при опорожнении емкостного оборудования (поз. ЕПн-1) отводится на свечу для сжигания малых, периодических сбросов газа.

      Розжиг на свече происходит следующим образом, при срабатывании предохранительного клапана на емкости, датчик давления установленный на отводящем трубопроводе от ППК дает сигнал в систему розжига, также возможно подать сигнал на розжиг по положению затвора обратного клапана на свече.

      Состав оборудования свечи:

      1. Оголовок Dу80.

      2. Ствол h=5,0м, Dу 100;

      3. Клапан обратный;

      4. Автоматизированная система управления розжигом и контролем пламени АСУ РКП. Типовое оборудование факельной установки на группу ДНС:

      1. Факельная установка;

      2. Емкость подземная дренажная для сбора конденсата с двумя насосами;

      3. Электрифицированные задвижки

      Особенности рассматриваемой установки:

      — полная автоматизация процесса «электророзжиг – контроль пламени»;

      — неограниченное количество и быстродействие запусков факела;

      На следующем рисунке приведена расчетная схема факельной установки с оголовком прямоточного типа. Факельная установка содержит ствол факела 1, факельный оголовок 2 и входной штуцер 3. Зачастую для расчетов принимают часто используемое отношение:

      — высота факельного ствола, м;

      — диаметр факельного ствола, м.

      При этом коэффициент местного сопротивления при повороте потока после входного штуцера 3 принимают ξпов=1

      При сжигании предельных легких углеводородов: метана, этана, пропана хорошо зарекомендовали себя оголовки прямоточного типа.

      При сжигании тяжелых углеводородов, а особенно непредельных, без применения специальных средств подавления дыма (подача водяного пара, дополнительного воздуха) образуется гораздо меньше дыма при применении специальных струйных факельных оголовков. Данный оголовки отличаются от прямоточных тем, что сбросной газ выходит в атмосферу не через цилиндрический срез факельного оголовка, а через ряд сопел, при этом обеспечивается хорошее смешение с воздухом и, как следствие, хорошее, а зачастую и бездымное сгорание.

      Исходными данными для расчета диаметра факельной установки являются: состав газа, его плотность ρ и избыточное давление ∆:

      — атмосферное давление, Па.

      Для газа можно применять модель несжимаемой жидкости, используя простые уравнения:

      – скорость газа, м/с;

      – площадь поперечного сечения, м 2 .

      – диаметр проходного сечения.

      – кинематический коэффициент вязкости, стокс.

      Современные факельные установки должны соответствовать следующим требованиям:

      • Бездымное или малодымное сжигание газа;

      • Быстрый и безотказный розжиг;

      • Возможность управления с отдаленного места (операторной);

      • Возможность передачи параметров работы установки оператору и на верхний уровень АСУТП, принятие автоматикой решений в случае выхода установки за рамки нормального режима.

      В соответствии с существующей теорией горения газов, чем больше молярная масса газа, тем сложнее обеспечить бездымное сгорание. Особенно много дыма бывает у ненасыщенных углеводородных газов. Для обеспечения бездымного сгорания применяют много способов. В основном они направлены на обеспечение максимального перемешивания сжигаемого газа с воздухом. При этом, согласно данным экспериментов, чем выше скорость газа, исходящая из сопла, тем с большей молярной массой можно бездымно сжечь газ.

      Эффективным способом дымоподавления является подача в зону горения пара, но в большинстве случаев такая возможность отсутствует. Не нашло большого применения и применение воздуходувок, так как при этом увеличиваются капитальные и эксплуатационные затраты.

      Конструкция большинства производимых оголовков в настоящее время представляет собой трубу из жаростойкой стали с кинетическим газовым затвором внутри, который служит для исключения проникновения пламени в ствол установки, для чего необходимо применение продувочного газа.

      На конце трубы установлены дежурные горелки и ветрозащитный козырек. Устройство розжига может быть как на оголовке, так и стволе, в том числе на основании ствола или вообще за ограждением установки. К дежурным горелкам при этом подходят запальные трубопроводы. Контроль пламени осуществляют термопарами, ионизационными зондами, оптическими, акустическими или газодинамическими датчиками. Каждый производитель по-своему решает, как организовать выход газа из оголовка и обеспечить бездымное сгорание сбросного газа.

      Установленные в щели лопатки обеспечивают турбулентность потока, при котором и происходит перемешивание газа с воздухом. Площадь щели рассчитывается таким образом, чтобы скорость потока газа была в диапазоне от 0,2 до 0,5 скорости звука в газе для газов с плотностью менее 0,8 плотности воздуха и от 0,2 скорости звука до 120 м/с для газов с большей плотностью.

      Если давление газа на входе в ствол недостаточно для обеспечения таких скоростей, то оголовок проектируется по типу горелки бытовой газовой плиты с диффузионным горением газа.

      В таких горелках пропан или пропан-бутановая смесь, то есть газ с достаточно большой молярной массой сгорает бездымно.

      Для обеспечения быстрого и безотказного розжига было решено отказаться от высоковольтных систем, в которых розжиг горючей смеси производится искрой в свече зажигания, в связи с затрудненным воспламенением холодной горючей смеси в зимнее время. После проведения экспериментов забраковали и самососную систему «бегущий огонь», при которой блок розжига с инжектором, готовящим горючую смесь газа с воздухом, находится на существенном расстоянии от дежурных горелок оголовка и дежурные горелки поджигаются фронтом пламени, проходящим по запальному трубопроводу.

      Основная причина – сложность обеспечения стехиометрического состава горючей смеси в инжекторе (для каждого состава топливного газа необходимо свое соотношение «газ – воздух») и высокая вероятность потухания фронта пламени в длинных запальных трубопроводах.

      Наилучшим и практически безотказным способом оказался розжиг калильной свечой, установленной внутри запальной горелки на расстоянии 100 мм от выхода горючей смеси. Розжиг калильной свечой хорошо зарекомендовал себя в жидкостных горелках, но для газовых систем стал применяться сравнительно недавно.

      Для контроля пламени установили термопары (такой способ применяют ведущие зарубежные фирмы). Для обеспечения их длительной работы пришлось заказывать специальную конструкцию с увеличенной длиной и повышенной термостойкостью клеммной головки. С целью повышения срока службы системы розжига, не стали объединять дежурную и запальную горелки в единую запальную горелку, работающую в пилотном режиме (серийно выпускаемые запальные горелки изготавливаются, как правило, из обычной нержавеющей стали типа 12Х18Н10Т, не предназначенной для длительного воздействия пламени). То есть в пламени находятся только дежурные горелки из специальной жаростойкой стали, а запальные горелки после розжига дежурных гаснут, сохраняя свой ресурс.

      Система розжига и контроля включает в себя:

      • Блок подготовки и подачи на дежурные и запальные горелки топливного газа, помещенный в теплоизолированный обогреваемый шкаф;

      • Инжектор, готовящий горючую смесь для дежурных горелок;

      • Блоки запальной и дежурной горелок с термопарой контроля пламени;

      • Систему АСУ на базе промышленного контроллера.

      Система АСУ состоит из трех блоков: шкафа АСУ, панели местного розжига и пульта оператора. Шкаф АСУ с панелью местного розжига взрывозащищенных исполнений устанавливаются за ограждением установки, пульт оператора в операторной. Связь шкафа АСУ с пультом оператора и с верхним уровнем АСУТП осуществляется по интерфейсу RS-485.

      Управление возможно в ручном и автоматическом режиме. Особенностью АСУ является то, что она не только осуществляет розжиг и контроль работы факельной установки, но и может принимать сигналы с датчиков всего факельного хозяйства: температуру и уровень конденсата в факельном сепараторе и дренажной емкости, расход и количество продувочного и сбросного газа с архивированием данных в режиме кольцевого буфера. Стоимость АСУ при этом возросла незначительно,

      однако такие дополнительные функции позволят проектировщикам и заказчикам существенно уменьшить затраты на обустройство и время на проектирование.

      При нарушении режима, например, потухании пламени, АСУ самостоятельно осуществит его розжиг. При уменьшения расхода продувочного газа ниже нормативного – подаст сигнал в АСУТП о необходимости подачи в факельный коллектор инертного газа. При переполнении дренажной емкости – подаст сигнал о необходимости включении насоса откачки.

      Пульт оператора оснащен сенсорной панелью с удобной и понятной мнемосхемой, на которой изображаются данные с датчиков и наименование текущей операции процесса розжига с обратным отсчетом времени до ее окончания.

      Объемный расход и скорость истечения, сжигаемого на факельной установке попутного нефтяного газа измеряется экспериментально, либо, при отсутствии прямых измерений, Wv рассчитывается по формуле:

      Wv = 0,785 ∙ U · d02

      U — скорость истечения ПНГ из выходного сопла факельной установки, м/с (по результатам измерений); d0 — диаметр выходного сопла, м (по проектным данным факельной установки).

      При отсутствии прямых измерений скорость истечения принимается:

      при периодических и аварийных сбросах:

      Uзв — скорость распространения звука в ПНГ.

      Массовый расход сбрасываемого на факельной установке газа рассчитывается по формуле:

      Wg = 2826U · d02 ∙ pг

      рг — плотность ПНГ, кг/м3.

      Объемный расход продуктов сгорания, покидающих факельную установку:

      WV — объемный расход (м/с) сжигаемого на факельной установке;

      WПС — объем продуктов сгорания;

      Тг — температура горения.

      2. ПБ 03-591-03. Правила устройства и безопасной эксплуатации факельных систем.

      3. РУКОВОДСТВО ПО БЕЗОПАСНОСТИ ФАКЕЛЬНЫХ СИСТЕМ.

      Факельные установки правила

      ФЕДЕРАЛЬНЫЙ ГОРНЫЙ И ПРОМЫШЛЕННЫЙ НАДЗОР РОССИИ

      от 10 июня 2003 года N 83

      Об утверждении Правил безопасной эксплуатации факельных систем

      ____________________________________________________________________
      Не применяется с 26 марта 2013 года на основании
      приказа Ростехнадзора от 29 декабря 2012 года N 801
      ____________________________________________________________________

      __________________________________________________________________
      На основании приказа Ростехнадзора от 26.12.2012 N 779 утверждено Руководство по безопасности факельных систем.
      __________________________________________________________________

      1. Утвердить Правила безопасной эксплуатации факельных систем.

      2. Направить Правила безопасной эксплуатации факельных систем на государственную регистрацию в Министерство юстиции Российской Федерации.

      Начальник
      Госгортехнадзора России
      В.М.Кульечев

      Зарегистрировано
      в Министерстве юстиции
      Российской Федерации
      19 июня 2003 года,
      регистрационный N 4725

      Электронный текст постановления
      подготовлен ЗАО «Кодекс» и сверен по:
      Российская газета,
      N 120/1, 21.06.2003
      (специальный выпуск)

      Правила устройства и безопасной эксплуатации факельных систем

      ПРАВИЛА
      безопасной эксплуатации факельных систем

      ____________________________________________________________________
      Внимание! Электронный текст Правил приводится в редакции, опубликованной в официальном издании ГУП «НТЦ «Промышленная безопасность» — разъяснение см. в ярлыке «Примечания».
      — Примечание изготовителя базы данных.
      ____________________________________________________________________

      I. Общие положения

      1.1. Правила устройства и безопасной эксплуатации факельных систем (далее — Правила) устанавливают требования, направленные на обеспечение промышленной безопасности, предупреждение аварий, случаев производственного травматизма при эксплуатации факельных систем в химической, нефтехимической и нефтеперерабатывающей промышленности.

      1.2. Правила разработаны в соответствии с Федеральным законом от 21.07.97 N 116-ФЗ «О промышленной безопасности опасных производственных объектов» (Собрание законодательства Российской Федерации. 1997. N 30. Ст.3588), Положением о Федеральном горном и промышленном надзоре России, утвержденным постановлением Правительства Российской Федерации от 03.12.01 N 841 (Собрание законодательства Российской Федерации. 2001. N 50. Ст.4742), Общими правилами промышленной безопасности для организаций, осуществляющих деятельность в области промышленной безопасности опасных производственных объектов, утвержденными постановлением Госгортехнадзора России от 18.10.02 N 61-А, зарегистрированным Минюстом России 28.11.02 г., регистрационный N 3968 (Российская газета. 2002. 5 дек. N 231), и предназначены для применения всеми организациями независимо от их организационно-правовых форм и форм собственности, осуществляющими деятельность в области промышленной безопасности и поднадзорными Госгортехнадзору России.

      1.3. Правила предназначены для применения:

      а) при проектировании, строительстве, эксплуатации, расширении, реконструкции, техническом перевооружении, консервации и ликвидации факельных систем в производствах нефте- и газоперерабатывающей, химической, нефтехимической и других опасных производственных объектах, связанных с обращением и хранением токсичных веществ, а также веществ, способных образовывать паро- и газовоздушные взрывопожароопасные смеси;

      б) при проведении экспертизы промышленной безопасности факельных систем.

      II. Общие требования

      2.1. Факельная система предназначена для сброса и последующего сжигания горючих газов и паров в случаях:

      срабатывания устройств аварийного сброса, предохранительных клапанов, гидрозатворов, ручного стравливания, а также освобождения технологических блоков от газов и паров в аварийных ситуациях автоматически или с применением дистанционно управляемой запорной арматуры и др.;

      постоянных, предусмотренных технологическим регламентом на производство сдувках;

      периодических сбросов газов и паров, пуска, наладки и остановки технологических объектов.

      2.2. Проектирование, строительство, реконструкция, техническое перевооружение и эксплуатация факельных систем осуществляются в соответствии с требованиями нормативных документов по промышленной безопасности, пожарной безопасности, устройству электроустановок, строительных норм и правил, государственных стандартов и настоящих Правил.

      Разрешения на применение оборудования факельных систем и продление сроков службы оформляются в установленном порядке.

      2.3. Организации, эксплуатирующие факельные системы, обязаны:

      составлять и утверждать в установленном порядке инструкции по безопасной эксплуатации факельных систем и их техническому обслуживанию. При необходимости внесения дополнений в инструкции, а также в случае изменений в схеме или режиме работы факельных систем они должны быть пересмотрены до истечения срока их действия;

      допускать к эксплуатации факельных систем производственный персонал требуемой квалификации, аттестованный или прошедший проверку знаний по вопросам промышленной безопасности в установленном порядке;

      осуществлять мероприятия по локализации возможных аварийных ситуаций и предупреждению аварий, а также предусматривать действия персонала по ликвидации аварийных ситуаций.

      2.4. Электроприемники факельных систем (устройства контроля пламени, запальные устройства и средства контроля, измерения и автоматики) по надежности электроснабжения относятся к потребителям первой категории.

      III. Виды сбросов и требования к ним

      3.1. При проектировании технологических процессов в необходимых случаях следует предусматривать поблочное освобождение аппаратуры и трубопроводов от взрывоопасных газов и паров с соответствующим автоматическим по заданной программе или дистанционным управлением отсекающими устройствами, прекращающими поступление газов и паров в аварийный блок.

      3.2. Сбросы горючих газов и паров, разделяющиеся на постоянные, периодические и аварийные, для сжигания или сбора и последующего использования следует направлять в факельные системы:

      общую (при условии совместимости сбросов);

      Принципиальные схемы сброса газов и паров приведены в приложениях 1 и 2.

      3.3. По каждому источнику сброса газов и паров, направляемых в факельные системы, должны быть определены возможные их составы и параметры (температура, давление, плотность, расход, продолжительность сброса, а также параметры максимального, среднего и минимального суммарного сбросов с объекта).

      3.4. Для предупреждения образования в факельной системе взрывоопасной смеси следует использовать продувочный газ — топливный или природный, инертные газы, в том числе газы, получаемые на технологических установках и используемые в качестве инертных газов.

      Принципиальная схема подачи продувочного газа приведена в приложении 3.

      3.5. Содержание кислорода в продувочных и сбрасываемых газах и парах, в том числе в газах сложного состава, как правило, не должно превышать 50% минимального взрывоопасного содержания кислорода в возможной смеси с горючим и обосновывается разработчиком проекта.

      3.6. При сбросах водорода, ацетилена, этилена и окиси углерода и смесей этих быстрогорящих газов содержание кислорода в них должно составлять не более 2% объемных и в каждом конкретном случае обосновывается разработчиком проекта.

      3.7. Запрещается направлять в факельную систему вещества, взаимодействие которых может привести к взрыву (например, окислитель и восстановитель).

      3.8. В газах и парах, сбрасываемых в общую и отдельную факельные системы, не должно быть капельной жидкости и твердых частиц. Для этих целей в границах технологической установки необходимо устанавливать сепараторы.

      В факельном коллекторе и подводящих трубопроводах температура газов и паров должна быть такой, при которой исключена возможность кристаллизации продуктов сброса.

      3.9. Для факельной системы с установкой сбора углеводородных газов и паров температура сбрасываемых газов и паров на выходе из технологической установки должна быть не выше 200 °С и не ниже 30 °С, а на расстоянии 150-200 м перед входом в газгольдер — не выше 60 °С.

      3.10. Запрещается использовать в качестве топлива сбрасываемые углеводородные газы и пары с объемным содержанием в них инертных газов более 5%, веществ I и II класса опасности (кроме бензола) — более 1%, сероводорода — более 8%.

      Сбросы, при сжигании которых в продуктах сгорания образуются или сохраняются вредные вещества I и II класса опасности, следует направлять в специальные емкости для дальнейшей утилизации и переработки.

      3.11. Не допускаются постоянные и периодические сбросы газов и паров в общие факельные системы, в которые направляются аварийные сбросы, если совмещение указанных сбросов может привести к повышению давления в системе до величины, препятствующей нормальной работе предохранительных клапанов и других противоаварийных устройств.

      3.12. Потери давления в факельных системах при максимальном сбросе не должны превышать:

      для систем, в которые направляются аварийные сбросы газов и паров, — 0,02 МПа на технологической установке и 0,08 МПа на участке от технологической установки до выхода из оголовка факельного ствола;

      для систем с установкой сбора углеводородных газов и паров — 0,05 МПа от технологической установки до выхода из оголовка факельного ствола.

      Для отдельных и специальных факельных систем потери давления не ограничиваются и определяются условиями безопасной работы подключенных к ним аппаратов.

      3.13. Горючие газы и пары, сбрасываемые с технологических аппаратов через гидрозатворы, рассчитанные на давление меньшее, чем давление в факельном коллекторе, следует направлять в специальную факельную систему или по специальному факельному трубопроводу, не связанному с коллектором от других предохранительных устройств аварийного сброса, постоянных и периодических сбросов.

      Специальный трубопровод через отдельный сепаратор необходимо подключать непосредственно к стволу факельной установки.

      3.14. В обоснованных случаях допускается установка запорной арматуры после гидрозатворов на месте врезки в общую факельную систему (при исключении возможности случайного ее закрытия). Одновременно предусматриваются дополнительные меры безопасности, в том числе снятие штурвала запорной арматуры, опломбирование ее в открытом состоянии, установка на ней специальных кожухов, вывод сигнала о положении арматуры на пульт управления.

      Тип запорной арматуры определяется проектной организацией.

      IV. Сбросы от предохранительных клапанов

      4.1. Сбросы от предохранительных клапанов направляются в факельные системы.

      4.2. Сбросы газов и паров от предохранительных клапанов, установленных на сосудах и аппаратах, работающих со средами, не относящимися к взрывоопасным и вредным веществам, а также сброс легких газов разрешается направлять через сбросную трубу в атмосферу.

      Устройство сбросных труб и условия сброса должны обеспечивать эффективное рассеивание сбрасываемых газов и паров, исключающее образование взрывоопасных концентраций в зоне размещения технологического оборудования, зданий и сооружений. Расчет концентраций горючего газа при сбросе через сбросную трубу приведен в приложении 4. При этом следует предусматривать устройства, предотвращающие попадание жидкости в сбросные трубы и ее скопление.

      К легким газам относятся метан, природный газ и водородсодержащий газ с плотностью не более 0,8 по отношению к плотности воздуха.

      В случае возможности изменения состава сбрасываемого газа, приводящего к увеличению его плотности более 0,8 по отношению к плотности воздуха, сброс газа в атмосферу не допускается.

      При организации сбросов в атмосферу следует руководствоваться типовыми расчетами концентрации в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий, и санитарными нормами.

      4.3. Сбросы от предохранительных клапанов горючих газов и паров, содержащих вещества I и II класса опасности в количествах не более 1% объемных (сероводород — до 8% объемных), допускается направлять в общую факельную систему.

      4.4. Сбросы от предохранительных клапанов газов и паров, содержащих вещества I и II класса опасности в количествах более 1% объемных, должны подвергаться очистке и обезвреживанию (нейтрализация, поглощение, разложение, сжигание и т.п.). Для сжигания такие сбросы направляются в отдельную или специальную факельную систему.

      4.5. Горючие газы и пары от предохранительных клапанов, установленных на складских емкостях, предназначенных для хранения сжиженных углеводородных газов и легковоспламеняющихся жидкостей, должны сбрасываться в отдельную или специальную факельную систему.

      При техническом обосновании в проектной документации такие сбросы допускается направлять для сжигания в факельный ствол общей факельной системы.

      V. Коллекторы, трубопроводы, насосы

      5.1. Для отдельных и специальных факельных систем следует предусматривать один факельный коллектор и одну факельную установку.

      Общие факельные системы должны иметь два факельных коллектора и две факельные установки для обеспечения безостановочной работы.

      При сбросах в общую факельную систему газов, паров и их смесей, не вызывающих коррозии более 0,1 мм в год, допускается обеспечивать факельные установки одним коллектором при техническом обосновании в проектной документации.

      5.2. На общих факельных системах в местах разветвления трубопроводов в целях отключения от факельных систем технологических установок, складов, переключения сепараторов, коллекторов и факельных стволов возможно размещение в горизонтальном положении запорных устройств, опломбированных в открытом состоянии.

      5.3. Факельные коллекторы и трубопроводы должны быть минимальной длины и иметь минимальное число поворотов, их необходимо прокладывать над землей (на опорах и эстакадах).

      5.4. На факельных коллекторах и трубопроводах запрещается устанавливать сальниковые компенсаторы.

      5.5. Тепловая компенсация факельных коллекторов и трубопроводов должна рассчитываться с учетом максимальной и минимальной температур сбрасываемых газов и паров, максимальной температуры пара для пропарки, а также температуры обогревающей среды для обогреваемых коллекторов и средней температуры наиболее холодной пятидневки.

      5.6. Коллекторы и трубопроводы факельных систем должны иметь при необходимости тепловую изоляцию, и (или) на них должны быть установлены обогревающие спутники для предотвращения конденсации и кристаллизации веществ в факельных системах.

      5.7. На факельных установках, предназначенных для сжигания горючих газов и паров, следует применять сепаратор с постоянным отводом жидкости.

      5.8. Факельные коллекторы и трубопроводы необходимо прокладывать с уклоном в сторону сепараторов не менее 0,003. Если невозможно выдерживать указанный уклон, в низших точках факельных коллекторов и трубопроводов размещают устройства для отвода конденсата. Конструкция сборников конденсата должна исключать унос жидкости и предусматривать их тепловую изоляцию и наружный обогрев. Сборники конденсата должны опорожняться автоматически, а в обоснованных случаях — дистанционно из операторной. Для откачки конденсата из сепараторов и сборников применяются центробежные насосы.

      5.9. Врезка цеховых трубопроводов в факельный коллектор должна производиться сверху в целях исключения заполнения их жидкостью.

      5.10. При незначительном содержании конденсата в сепараторах на факельных установках, предназначенных для сжигания паров низкокипящих жидкостей (включая пропан, пропилен, аммиак и аммиаксодержащие газы), удалять жидкость из сепаратора разрешается за счет подачи пара или горячей воды в наружный змеевик, обогревающий сепаратор, при этом необходимо исключить возможность повышения давления в емкости выше расчетного. Данное требование обосновывается в проектной документации.

      5.11. При наличии в сбросных газах твердых или смолистых осадков следует устанавливать два параллельных сепаратора. При малом содержании примесей сепаратор допускается оснащать байпасной линией с системой сблокированных задвижек «закрыто-открыто» и быстросъемными заглушками, обеспечивающими постоянный проток газа и возможность чистки сепаратора.

      5.12. В зависимости от места установки необходимо применять насосы, изготовленные по I или II категории размещения в части воздействия климатических факторов внешней среды.

      5.13. Установка факельного сепаратора и насоса по отношению друг к другу осуществляется исходя из условия обеспечения заполнения насоса конденсатом при его поступлении в сепаратор и исключения возникновения кавитации при работе насоса.

      5.14. Всасывающий трубопровод должен иметь минимальную длину и уклон в сторону насоса, в нем не должно быть застойных зон.

      Горизонтальные участки всасывающих трубопроводов следует располагать внизу (у насосов). Необходимо избегать горизонтальных участков непосредственно после сепаратора, для чего выход всасывающего трубопровода из нижнего штуцера сепаратора к насосу следует размещать вертикально вниз.

      5.15. Диаметр всасывающего трубопровода определяется по максимальной производительности насоса, принимаемой по графической характеристике.

      5.16. Все трубопроводы и арматура обвязки насосов во избежание замерзания в холодное время года должны обогреваться и иметь тепловую изоляцию.

      5.17. Включение и выключение насосов для откачки конденсата из сборников и сепараторов должны быть как автоматическими, так и с места их установки (выполняется в соответствии со схемой приложения 5).

      Рекомендуемый порядок работы насосов приведен в указанном приложении.

      5.18. Пропускную способность общих факельных систем следует рассчитывать на следующие расходы газов и паров:

      при постоянных и периодических сбросах — на сумму периодических (с коэффициентом 0,2) и постоянных сбросов от всех подключенных технологических установок, но не менее чем на сумму постоянных сбросов и максимального периодического сброса (с коэффициентом 1,2) от установки с наибольшей величиной этого сброса;

      при аварийных сбросах — на сумму аварийных сбросов (с коэффициентом 0,25) от всех подключенных установок, но не менее чем на величину аварийного сброса (с коэффициентом 1,5) от установки с наибольшей величиной этого сброса.

      Допускается рассчитывать пропускную способность на сумму аварийных сбросов от всех подключенных технологических установок; при аварийных, постоянных и периодических сбросах — на сумму всех видов сбросов, рассчитанных в порядке, установленном настоящим пунктом.

      5.19. Пропускную способность отдельных и специальных факельных систем следует рассчитывать на сумму постоянных сбросов от всех подключенных технологических блоков и аварийного сброса от одного блока с наибольшей величиной этого сброса.

      5.20. Площадь проходного сечения задвижек для аварийного сброса с ручным или дистанционным включением привода должна соответствовать пропускной способности факельного коллектора на выходе с установки.

      5.21. На трубопроводах сбрасываемых газов и паров фланцевые соединения устанавливаются только в местах присоединения арматуры, КИП, а для монтажных соединений — в местах, где сварка невыполнима.

      Каждый сварной шов факельного коллектора (трубопровода) и факельного ствола проверяют неразрушающим методом, обеспечивающим эффективный контроль качества сварного шва.

      5.22. На коллекторе перед факельным стволом или на факельном стволе должно быть фланцевое соединение для установки заглушки при проведении испытаний на прочность.

      5.23. Для продувки технологических установок и цеховых факельных трубопроводов азотом или воздухом при пуске или остановке на ремонт в обоснованных случаях на выходе с технологической установки устанавливается свеча с отключающей арматурой.

      5.24. Во избежание образования взрывоопасной смеси необходимо предусматривать непрерывную подачу продувочного (топливного или инертного) газа в начало факельного коллектора. В случае прекращения подачи топливного газа должна быть обеспечена автоматическая подача инертного газа. Количество продувочного газа определяется в соответствии с п.11.2 настоящих Правил.

      VI. Факельная установка

      6.1. При работе факельной установки необходимо обеспечивать стабильное горение в широком интервале расходов газов и паров, бездымное сжигание постоянных и периодических сбросов, а также безопасную плотность теплового потока и предотвращение попадания воздуха через верхний срез факельного ствола.

      6.2. Конструкция факельной установки должна предусматривать наличие факельного ствола, оснащенного оголовком и газовым затвором, средств контроля и автоматизации, дистанционного электрозапального устройства, подводящих трубопроводов топливного газа и горючей смеси, дежурных горелок с запальниками.

      При необходимости факельная установка оснащается сепаратором, гидрозатвором, огнепреградителем (при сбросе ацетилена), насосами и устройством для отвода конденсата.

      В обоснованных случаях для сжигания газов и паров допускается применение специальных наземных факельных установок без факельного ствола (устанавливается разработчиком проекта).

      При наличии в сбросных газах и парах твердых и смолистых веществ, которые, отлагаясь, уменьшают площадь проходного сечения газового затвора, последний не устанавливается (обосновывается в проектной документации).

      6.3. Диаметр верхнего среза факельного оголовка для обеспечения стабильного (без срыва) горения следует рассчитывать по максимальной скорости газов и паров, которая не должна превышать 0,5 скорости звука в сбросном газе. При сжигании газов и паров с плотностью более 0,8 относительно плотности воздуха скорость сброса не должна превышать 120 м/с.

      6.4. Для полноты сжигания сбрасываемых углеводородных газов и паров (за исключением природного и некоптящих газов) следует предусматривать подачу водяного пара, воздуха или воды. Количество пара определяется расчетом исходя из условия обеспечения бездымного сжигания постоянных сбросов.

      Если отношение скорости сброса к скорости звука составляет более 0,2, то подача пара не требуется.

      Доступ к полной версии этого документа ограничен

      Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Закрыть меню